EVALUATING THE USEFULNESS AND RESPONSE TO GRAPHICAL INFORMATION USED TO COMMUNICATE UNCERTAINTY-DRIVEN AND PROBABILISTIC WINTER WEATHER FORECASTS

Survey Results from U.S. General Public

833 Responses

Section 1: General/Background Questions (starts on slide 2)
Section 2: Four Scenarios (Past Real Examples of Graphics Used By NWS Offices
to Communicate Upcoming Winter Storms) (starts on slide 6)
Section 3: Specific Questions About the Graphics (starts on slide 22)

Please select your age group
 $$
(N=833)
$$

AGE DISTRIBUTION OF RESPONDENTS TO THE SURVEY OF THE MEMBERS OF THE U.S. PUBLIC

In which state do you currently reside?
($N=832$)

Do you have a background in meteorology? (working towards a degree, have a degree, etc.) ($N=833$)

Are you a partner of the National Weather Service?

$$
(N=833)
$$

How many winter storms have you experienced within the past 10 years? ($N=833$)

During the WINTER SEASON, what source of weather information do you look at most? ($N=833$)

Rank the following types of forecast information in terms of importance to you before a winter
storm? (rank 1 is most important, rank 6 is least important) ($N=824$)

Section 2 of Survey Explained:

Four scenarios were created, and respondents were randomly placed in ONE of them by the survey software.

Within each scenario, a series of graphics used to message winter storms that were posted to Twitter and Facebook by NWS offices during the 2019-2020 or 2020-21 winter seasons were presented to respondents individually with a series of questions asked about each graphic. Sequences of three or four graphics were selected based on the types of graphics used to message the upcoming winter storm, with the goal to include as many different types of graphic styles at the long-range lead time and as many different types of risk probability graphics in the survey. Additionally, for the aspect of communicating uncertainty on snowfall forecast maps, graphic sequences were selected to get the public's feedback on how circled areas of uncertainty were used on snow maps. Based on these objectives, a series of graphics used by NWS Omaha from January 22-24, 2021, to communicate an upcoming winter storm were used as the first scenario in this survey ($N=187$). A series of graphics used by NWS State College from December 15-17, 2020, were used as the second scenario in this survey ($N=212$), a series of graphics used by NWS Bismarck from November 24-28, 2019, were used as the third scenario in this survey ($N=221$), and a series of graphics used by NWS Green Bay from November 23-25, 2019, were used as the fourth scenario in this survey $(N=213)$. Many of the same questions were asked across all four scenarios to allow for easy comparison of the results.

	Scenario \#1 - NWS Omaha	Scenario \#2 NWS State College	Scenario \#3 - NWS Bismarck	Scenario \#4 - NWS Green Bay
First Graphic Presen- ted		Posted 12/11/20 five days before storm	Posted 11/24/19 - five days before storm	Posted 11/23/19 three days before storm
Second Graphic Presented			Posted 11/27/19 - two days before storm	 Posted 11/24/19 two days before storm
Third Graphic Presented		Posted 12/14/20 two days before storm	Posted 11/28/19 - one day before storm	Posted 11/24/19 two days before storm
Fouth Graphic Presented	Posted 1/24/21 - one day before storm			Posted 11/25/19 one day before storm

	Scenario \#1 - NWS Omaha	Scenario \#2 NWS State College	Scenario \#3 - NWS Bismarck	Scenario \#4 - NWS Green Bay
First Graphic Presented	Posted $1 / 22 / 21$ - three days before storm	Posted 12/11/20 five days before storm	Posted 11/24/19 - five days before storm	Posted 11/23/19 three days before storm
Second Graphic Presen- ted	Posted $1 / 23 / 21$ - two days before storm	Posted $12 / 13 / 20-$ three days before storm	Posted 11/27/19 - two days before storm	
Third Graphic Presen- ted	Posted $1 / 23 / 21$ - two days before storm		Posted 11/28/19 - one day before storm	Posted 11/24/19 two days before storm
Fouth Graphic Presented	Posted 1/24/21 - one day before storm			Posted 11/25/19 one day before storm

Section 2:

Four Scenarios (Long-Range Graphics)

First, focusing on these "long range" graphics
(slides 8-11 highlight the questions asked about them)

Question asked for all five of the
graphics shown below:
Not easy at all
Very easy

Section 2: Four Scenarios (Long-Range Graphics)
(respondents selected a number from 1 through 10)
0
$0 \quad 1$
$\bigcirc \bigcirc$

Question asked for all five of the

Section 2:

 Four Scenarios (Long-Range Graphics)(respondents selected a number from 1 through 10)
Not well at all

0	1	2	3	4	5	6	7	8	9	10
\bigcirc										

Question asked for both of the graphics shown below: (respondents selected a number from 1 through 10)

0	1	2	3	4	5	6	7	8	9	10
\bigcirc										

Section 2: Four Scenarios (Long-Range Graphics)

Heat Map Question Results: Respondents chose what part of each graphic they thought provided them with the most important and helpful information, and results are displayed as a heat map with blue and green shadings indicating that not many people selected that part of the graphic while red, orange, and yellow shadings indicate that many people selected that part of the graphic. (a) NWS Omaha graphic, (b) NWS Green Bay

Section 2:

graphic \#2, (c) NWS Bismarck graphic.

WINTER STORM POTENTIAL
ACROSS NORTHEAST WISCONSIN

(b)

	Scenario \#1 - NWS Omaha	Scenario \#2 NWS State College	Scenario \#3 - NWS Bismarck	Scenario \#4 NWS Green Bay
First Graphic Presented			Posted 11/24/19 - five days before storm	Posted 11/23/19 three days before storm
Second Graphic Presented	Posted $1 / 23 / 21$ - two days before storm		Posted 11/27/19 - two days before storm	
Third Graphic Presented	Posted 1/23/21 - two days before storm		Posted 11/28/19 - one day before storm	
Fouth Graphic Presented	Posted 1/24/21 - one day before storm			

Section 2: Four Scenarios (Risk Probability Graphics)

Next, focusing on these "risk probability" graphics
(slides 13-20 highlight the questions asked about them)

Question asked for all four of the graphics shown below:

How easy is this graphic to interpret?
Not easy at all
Section 2: Four Scenarios (Risk Probability Graphics)
Very easy
$\begin{array}{lll}0 & 1 & 2\end{array}$
$\bigcirc \bigcirc \quad 2$

RISK PROBABILITY GRAPHICS: EASE OF INTERPRETATION COMPARISON

WINTER STORM
POTENTIAL

(2) $=$

\% \%m
(0) =iveman
, maxasomana
mame

Question asked for all four of the
graphics shown below:
How well does this graphic communicate the uncertainty with the forecast?

Not well at all
Very well

Section 2: Four Scenarios (Risk Probability Graphics)
(respondents selected a number from 1 through 10)

RISK PROBABILITY GRAPHICS: COMMUNICATION OF UNCERTAINTY COMPARISON - SURVEY OF U.S. PUBLIC

Next, in each scenario, a city was circled on the risk probability graphic and respondents were asked to enter how much snow they thought the city would receive from the upcoming winter storm based on the information to them on the risk probability map. Cities were chosen to test respondents' understanding of the risk probability map, with some being selected with lower probabilities and others being selected with higher probabilities

Section 2: Four Scenarios (Risk Probability Graphics)

For NWS Omaha Scenario:

BASED ON NWS STATE COLLEGE RISK PROBABILITY GRAPHIC: AMOUNT OF SNOW FOR STATE COLLEGE -

SURVEY OF U.S. PUBLIC

Zoomed in view of the risk probability map used in this question

Likelihood of Significant Snowfall (>6")

Section 2: Four Scenario (Risk Probability

Graphics)

BASED ON NWS BISMARCK RISK PROBABILITY GRAPHIC: AMOUNT OF SNOW FOR BISMARCK - SURVEY OF U.S. PUBLIC

Zoomed in view of the risk probability map used in this question

BASED ON NWS GREEN BAY RISK PROBABILITY GRAPHIC: AMOUNT OF SNOW FOR WAUSAUKEE - SURVEY OF U.S.

80
70
60
50
40
20

20
10

PUBLIC

Heat Map Question Results: Respondents chose what part of each graphic they thought provided them with the most important and helpful information, and results are displayed as a heat map with blue and green shadings indicating that not many people selected that part of the graphic while red, orange, and yellow shadings indicate that many people selected that part of the graphic. (a) NWS State College graphic, (b) NWS Bismarck graphic.

Heavy Snow Wed - Thu AM

Section 2:

 Four Scenarios (Risk Probability Graphics) (a)

Respondents were then given the snowfall forecast map that was released by the probability map "prepared them" for the snowfall forecast map that was released)

Section 2: Four Scenarios (Graphics with Snow Maps)

Finally, focusing on these snow maps with "circled areas of uncertainty"
(slides 22-24
highlight the questions asked about them)

Question asked for all four of the graphics shown below: (respondents selected a number from 1 through 10)

Is the circled area of uncertainty helpful for you to understand the uncertainty with the forecast?
Not helpful at all

Section 2:

 Four ScenariosVery helpful (Graphics with

With just the NWS Omaha Scenario, a snow map update was given, and respondents were asked:

Suppose you live in Omaha (in the black box on the graphic above). Did the circled area of uncertainty on the previous graphic help you anticipate the increased snow totals predicted for Omaha on this updated map?

Not helpful at all										
0	1	2	3	4	5	6	7	8	9	10
0	0	0	O	O	O	O	O	O	O	O

NWS OMAHA SNOW MAP UPDATE: WAS CIRCLED AREA OF UNCERTAINTY ON PREVIOUS SNOW MAP HELPFUL FOR ANTICIPATING THE INCREASED SNOWFALL

Section 2: Four Scenarios (Graphics with Snow Maps)

Heat Map Question Results: Respondents chose what part of each graphic they thought provided them with the most important and helpful information, and results are displayed as a heat map with blue and green shadings indicating that not many people selected that part of the graphic while red, orange, and yellow shadings indicate that many people selected that part of the graphic. (a) NWS Omaha graphic, (b) NWS Green Bay

Section 2:

 Four Scenarios (Graphics with Snow Maps) graphic, (c) NWS Bismarck graphic.

LONG-RANGE WINTER WEATHER GRAPHIC STYLE PREFERENCE OF RESPONDENTS TO THE SURVEY OF MEMBERS OF THE U.S. PUBLIC

Question: ($N=831$) Several days (about 3-7 days) before a winter storm, National Weather Service offices will communicate the threat of an upcoming winter storm in a variety of ways. Please select the style of graphic that you think is MOST effective at communicating an upcoming winter storm.
(Answer choices were randomized)

Question: ($\mathrm{N}=831$)
If you live at the white X on the above snowfall forecast map for an incoming storm that will impact your area tomorrow, how do you interpret the circled area that you are located within? Select all that apply or type your own answer.

Suppose you live in the Sioux Falls, SD area and a winter storm will impact your area tomorrow. The National Weather Service could release one of the two snowfall forecast maps shown below. Both display virtually the same forecast, however, the way that the snowfall forecast ranges are shown is different between the two. Which snowfall forecast map do you prefer based on this difference?

Studies have shown that using the larger snowfall ranges results in the actual snowfall amount verifying within that range $\mathbf{5 0 \%}$ of the time (for example, if the forecasted range for Yankton is $\mathbf{3 - 1 1 "}$ and the actual amount of snow that falls in Yankton is 7", this forecast verifies). The smaller snowfall ranges result in the actual snowfall amount verifying within that range $\mathbf{3 0 \%}$ of the time. Given this information, which snowfall forecast map do you prefer? Note: snowfall forecast map graphics are the same as those from the previous question
"Larger" snowfall ranges
"Smaller" snowfall ranges
Expected Snowfall - Official NWS Forecast

O, 几

Probabilistic Snowfall Map Results

SNOWFALL RANGE TYPE PREFERENCE FOR SNOW OF RESPONDENTS TO THE SURVEY OF

- 25th-75th percentile probabilistic snowfall
- NWS color table snowfall ranges map (smaller ranges)

Section 3: Specific Questions About Graphics

See thesis pages 44-46 \& 48-49 for full explanation of these snowfall forecast maps and what the results mean

See Appendix C of thesis for fullsize graphics (Questions \#53 \&\#54)

Question: In your opinion, at least how many inches of snow would need to fall for it to be considered "plowable"?

Question asked due to NWS State College's experimental "Probability of Plowable Snowfall" graphic used 4-7 before an upcoming winter storm
It uses the WPC's probability of exceeding 0.25 inches of liquid equivalent of snow/sleet map and puts those probabilities into a three-tiered, red/orange/yellow color scheme. Using a 10 to 1 snow to liquid ratio, this graphic would display the probability of exceeding 2.5 inches of snow, which NWS State College used the term "plowable" to define. Snow to liquid ratios can vary for each winter storm, which is one of the reasons why NWS State College chose to use a more generalized term instead of explicitly stating that this graphic provides the probability of exceeding 2.5 inches of snow throughout the forecast area.

